Monatshefte für Chemie Chemical Monthly

© by Springer-Verlag 1982

Mittlere Schwingungsamplituden und thermodynamische Funktionen von SeOF₄

Kurze Mitteilung

Enrique J. Baran

Area de Química Inorgánica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900-La Plata, Argentinien

(Eingegangen 22. Juni 1982. Angenommen 15. Juli 1982)

Mean Amplitudes of Vibration and Thermodynamic Functions of SeOF₄
(Short Communication)

Mean amplitudes of vibration and thermodynamic functions for ${\rm SeOF_4}$ have been calculated in a wide temperature range, from recently reported spectroscopic data. The results are briefly discussed and some comparisons with related species are made.

(Keywords: Bond properties; Mean amplitudes of vibration; Thermodynamic functions)

Vor kurzem haben wir Berechnungen der mittleren Schwingungsamplituden für das SeOF₄-Molekül durchgeführt¹. Im Zusammenhang mit dieser Arbeit haben wir jetzt auch für die entsprechende Selen-Verbindung ähnliche Berechnungen unternommen und dazu auch noch aus den spektroskopischen Daten die thermodynamischen Funktionen dieses Moleküls ermittelt.

Das Schwingungsspektrum von SeOF₄ wurde erst kürzlich an Hand von Tieftemperatur-IR und Raman-Messungen untersucht und zuge- ordnet². Die Ergebnisse dieser Messungen bewiesen, daß das Molekül tatsächlich, wie schon früher vermutet³, mit SeOF₄ isostrukturell ist. Dies bedeutet, daß SeOF₄ eine trigonal-bipyramidale Struktur mit dem Sauerstoffatom auf der äquatorialen Ebene besitzt (Punktsymmetrie C_{2v})².

Zur Berechnung der mittleren Schwingungsamplituden haben wir die sogenannte "Methode der charakteristischen Schwingungen"4-6

Tabelle 1. Mittlere Schwingungsamplituden (in Å) für $SeOF_4$ bei verschiedenen Temperaturen

$T(\mathrm{K})$	$u_{\mathrm{Se-F}(eq)}$	$u_{\mathrm{Se-F}(ax)}$	$n^{\mathrm{Se}\cdot\mathrm{O}}$	$u_{\mathrm{F}(eq)(eq)}$	$u_{\mathbf{F}(ax)(ax)}$	$u_{\mathbf{F}(ax)}$ O	$u_{\mathrm{F}(ax)\mathrm{F}(eq)}$
0	0,0390	0,0407	0.0352	0,057	0,057	0.067	0.064
100	0.0390	0,0407	0,0352	0.057	0,058	0,067	0,065
200	0,0392	0,0411	0.0352	0.059	0.062	0,073	0,069
298,16	0,0402	0.0425	0,0354	0,063	0,067	0,081	0,076
300	0.0403	0.0425	0.0354	0,063	0,067	0,081	0,076
400	0.0420	0,0447	0.0361	0,068	0.073	060,0	0,084
500	0,0442	0,0474	0,0371	0,073	0,079	860,0	0,091
009	0,0466	0,0502	0,0383	0,078	0,085	0,106	0,099
700	0,0491	0.0530	0.0398	0,083	060,0	0,113	0,105
800	0,0516	0,0558	0.0413	0,088	960'0	0,121	0.112
006	0,0541	0,0586	0.0429	0,093	0,101	0,128	0,118
1000	0,0565	0,0613	0,0444	0,097	0,106	0,134	0,124

benutzt. Die erforderlichen Schwingungsfrequenzen und Strukturparameter wurde der Arbeit von Lit.² entnommen.

Die Ergebnisse im Temperaturbereich zwischen 0 und $1\,000\,\mathrm{K}$ sind in Tabelle 1 zusammengestellt.

Tabelle 2. Thermodynamische Funktionen von SeOF $_4$ für den idealen Gaszustand bei 1 Atm. (in cal $mol^{-1} K^{-1}$)

T(K)	C_{p}	$(H^0 - H_8)/T$	$(G^0 - H_0^0)/T$	S0
	- P			
100	11,31	8,94	50,58	59,51
200	18,11	11,87	$57,\!63$	69,50
300	22,87	14,80	63,01	77,82
400	25,77	17,21	67.61	84,83
500	$27,\!54$	19,12	71,67	90,78
600	$28,\!66$	20,62	$75,\!29$	95,91
700	29,41	21,83	$78,\!56$	100,39
800	29,92	22.81	81,54	104,35
900	$30,\!29$	$23,\!62$	84,28	107,90
1 000	30,56	$24,\!30$	86,80	111,10
1 100	30,76	24,88	89,15	114,03
1 200	30,92	25,38	91,33	116.71
1 300	31,05	25,81	93,38	119,19
1 400	31,15	$26,\!19$	95,31	121,49
1 500	$31,\!23$	$26,\!52$	97,13	123,65
1 600	31,30	26,82	98,85	125,66
1 700	31,35	27,08	100,48	127.56
1 800	31,40	$27,\!32$	102,04	$129,\!36$
1 900	31,44	$27,\!54$	103,52	131,06
2 000	31,47	27,73	104,94	132,67

Ein Vergleich dieser Werte mit denjenigen anderer verwandter Verbindungen läßt folgende Feststellungen treffen:

- 1. Die mittleren Schwingungsamplituden der Se—O-Bindungen sind etwas kleiner als diejenigen des SeO $_4^2$ -Ions (0,039 Å bei 298 K) 7 was beweist, daß vorliegende Selen—Sauerstoff-Bindung besonders stark ist. Dies wird auch noch durch den hohen Wert der entsprechenden Kraftkonstante (8,2 mdyn/Å) 2 bestätigt.
- 2. Genau wie bei SOF_4 sind auch im vorliegenden Fall die Amplitudenwerte der axialen Se—F-Bindungen geringfügig größer als diejenigen der entsprechenden äquatorialen Bindungen. Dieses Verhalten zeigt, daß letztere Bindungen etwas stärker sind. Auch dieses Ergebnis

1136 E. J. Baran:

steht mit dem für diese Bindungen berechneten Kraftkonstantenwerten (Se— $F_{ax}=4.14$ und Se— $F_{\bar{a}q}=4.70\,\mathrm{mdyn/\mathring{A}})^2$ in gutem Einklang. Es kann noch hinzugefügt werden, daß auch beim strukturell verwandten Se F_4 die Amplitudenwerte der axialen Bindungen höher als die der äquatorialen liegen. Der Unterschied ist aber im diesen letzteren Falle bedeutender (bei 298 K 0.0397 gegen 0.0453 \mathring{A})8.

- 3. Abgesehen von diesem Unterschied läßt sich dennoch feststellen, daß die Se—F-Amplitudenwerte ganz deutlich in demjenigen Bereich auftreten welcher für diese mittleren Schwingungsamplituden als charakeristisch zu betrachten ist (vgl. z. B.⁸⁻¹⁰).
- 4. Die Amplitudenwerte der nicht gebundenen Paare zeigen ungefähr die gleiche Anordnung wie bei SOF_4 , d. h., $u_{\mathrm{OF}(ax)} > u_{\mathrm{F}(ax)\mathrm{F}(eq)} > u_{\mathrm{F}(ax)\mathrm{F}(ax)} > u_{\mathrm{F}(eq)\mathrm{F}(eq)}$. Der einzige Unterschied liegt darin, daß bei SOF_4 die $\mathrm{F}(ax)\mathrm{F}(ax)$ und $\mathrm{F}(eq)\mathrm{F}(eq)$ -Paare im ganzen Temperaturbereich praktisch identisch ausfallen. Was die absolute Größenordnung betrifft, so liegen diese Werte bei SeOF_4 bedeutend höher.

Schließlich haben wir auch noch aus den jetzt vorhandenen spektroskopischen Daten die thermodynamischen Funktionen für das $SeOF_4$ berechnet. Diese wurden für den idealen Gaszustand (nach den üblichen Formeln¹¹) unter Annahme eines harmonischen Oszillators und starren Rotators erhalten. Die Symmetriezahl ist 2.

Die Ergebnisse, Molwärme (C_p) , reduzierte Enthalpie $[(H^0-H_0^0)/T]$, reduzierte freie Enthalpie $[(G^0-H_0^0)T]$ und Entropie (S^0) , sind Tabelle 2 zu entnehmen.

Ein Vergleich dieser Werte mit den bereits früher für das isostrukturelle SOF_4 berechneten¹² zeigt, daß erwartungsgemäß alle $SeOF_4$ -Werte geringfügig höher liegen.

Alle Berechnungen wurden an einem IBM-4331-Computer (CESPI-Universidad Nacional de La Plata) durchgeführt.

Diese Arbeit wurde mit Unterstützung des "Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina" durchgeführt.

Literatur

- ¹ Baran E. J., Monatsh. Chem. **112**, 743 (1981).
- ² Willert-Porada M., Willner H., Seppelt K., Spectrochim. Acta 37 A, 911 (1981).
- ³ Seppelt K., Z. anorg. allgem. Chem. **406**, 287 (1974).
- 4 Müller A., Peacock C. J., Schulze H., Heidborn U., J. Mol. Struct. 3, 252 (1969).
- Müller A., Baran E. J., Schmidt K. H., Characteristic Mean Amplitudes of Vibration, in: Molecular Structures and Vibrations (Cyvin S. J., Hrsg.). Amsterdam: Elsevier. 1972.

- ⁶ Baran E. J., Anales Asoc. Quím. Argent. **61**, 141 (1973).
- ⁷ Baran E. J., Monatsh. Chem. **106**, 121 (1975).
- ⁸ Baran E. J., Monatsh. Chem. **112**, 301 (1981).
- ⁹ Baran E. J., Monatsh. Chem. 105, 362 (1974).
- ¹⁰ Baran E. J., Monatsh. Chem. 107, 473 (1976).
- ¹¹ Allen G., Pritchard H. O., Statistical Mechanics and Spectroscopy. London: Butterworths. 1974.
- ¹² Christie K. O., Schack C. J., Curtis E. C., Spectrochim. Acta **33 A**, 323 (1977).